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ABSTRACT 

Increasing number of corporations and workplaces have begun to provide flexible working hours, 

or flextime, for employees, which is expected to reduce congestions by redistributing the temporal 
pattern of commuters’ departure time.  This study examines the impacts of flextime on departure 
time choice using a Bayesian continuous-time hazard duration model. The model accommodates 
the time-varying effect of covariates and unobserved heterogeneity. Results from the Austin 

Household Travel Survey collected between 2017 and 2018 show that workers who have a 
flextime option choose to leave later, with a predominant effect deterring AM peak departures. 
Other trip and individual-specific variables such as travelers’ job type, trip duration, number of 
trips during the travel day and household income were found to have significant impacts on 

departure time choice. The results also show that flextime is more effective shifting the departure 
time for retail and service sector employees, those who travel longer and perform more daily 
activities.   The findings of this study reconfirm the theoretical underpinnings that implementing 
such policies may ease congestion by staggering the travel demand from peak to off-peak hours.    

Keywords: Flextime; departure time; congestion relief; time-varying effect, proportional hazards. 

INTRODUCTION 

Departure time choice is an important component of commuters’ trip-making behavior. At an 
individual level, the overall cost of commuting, including the penalties for travel-time delays and 

early or late arrival, depends on departure time choice. At the system level, departure time choice 
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determines the temporal pattern of vehicles occupying the network and the resulting level of 
service and congestion on urban roadways. The classic bottleneck theory was first formulated by 
Vickery (1969) to illustrate commuters’ trip-making behavior and the resulting congestion during 

peak hours. According to this simplified model, the potential bottleneck in a fixed capacity 
roadway activates when flow exceeds capacity. As a result, commuters suffer delays from long 
queuing at congested bottlenecks. At the same time, they have to consider penalties for early and 
late arrival at their destination. Early arrival entails disutility considering the opportunity cost of 

time: the worker could enjoy their time better outside the workplace. Starting work early may not 
ensure higher wages earned in most cases. However, late arrival may entail greater disutility on 
grounds of punctuality. There may be various forms of penalties imposed by employers, such as a 
warning, salary deduction or even loss of the job. Thus, commuting cost is not simply a function 

of travel time, but is instead the total cost derived from travel time, delay, and early and late arrival 
(Small, 1982). A flexible working schedule plays a significant part in this decision. By choosing 
flexible working hours, commuters can avoid late or early arrival penalties and minimize overall 
commuting cost. If a large number of travelers depart before or after peak hours, travel demand 

may be spread over a wider time window, thereby reducing peak congestion.  

Existing studies that explore the traveler-level benefits associated with flextime also reveal that 
the most obvious benefit is avoiding congestion. It was found that driver stress is lower for 
commuters who have a flextime alternative since they may choose to travel during off-peak hours 

(Lucas and Heady, 2002; Rowden et al., 2011). Moreover, flexible working hours allow for greater 
flexibility in lifestyle choices. For example, individuals may have time for other personal activities, 
such as shopping, taking children to school, and doing other household-related activities (Combs, 
2010). Research has shown that early arrival to work is associated with an increase in time for 

leisure activities after work (Ott, 1980; Moore et al., 1984; Combs, 2010). 

About 81 million workers, accounting for 57% of all full-time workers in the USA, had the ability 
to choose a flexible schedule in 2018 (Bureau of Labor Statistics, 2020). The Bureau of Labor 
Statistics (2020) found that public sector employees are more likely to have flexible working hours 

than private sector employees. The COVID-19 pandemic reflects the importance of flexible 
workplace policies to reduce the reliance on fixed infrastructure. Many organizations are 
increasingly embracing flexible working schedules and allowing their workers to adapt to alter 
their activity schedules. Such practices can help employees manage household responsibilit ies, 

avoid unreliable transportation, and take care of mental health.  

Understanding departure time choice is important to assess the true impact of increasing flexibility 
at the workplace (McCafferty and Hall, 1982), especially in special instances brought about by a 
pandemic. Decision making for departure time depends on personal heterogeneity and institutiona l 

constraints. Previous studies analyzed departure time choice to examine the effectiveness of 
policies that affect commuting cost, such as tolls, congestion pricing (Kalmanje and Kockelman, 
2004; Ozbey and Yanmaz-Tuzel, 2008), information access and travel-time reliability (Jha et al., 
1998; Ettema and Timmermans, 2003;; Hendrickson and Plank, 1984). However, empirical 

evidence of flextime’s effect on departure time is relatively scarce (McCafferty and Hall, 1982; 
Saleh and Farrell, 2005; He, 2013). Discrete choice methods were used in earlier studies to analyze 
flextime impacts on departure time, although choices that are made in continuous time. This study 
applies a continuous-time proportional hazard duration model within a Bayesian framework using 

data from the Austin Household Travel Survey for travel between 2017 and 2018. The model 
accommodates time-varying effects of several covariates and unobserved heterogeneity in 
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departure time decision with a flexible framework for controlling other individual-specific effects. 
The remainder of the paper is organized as follows. A detailed literature review on flextime 
impacting departure time choice is presented next. This is followed by data description and model 

specification. Findings from the model estimation are discussed next, and the paper ends with 
conclusions.   

LITERATURE REVIEW 

Few studies focus on the impacts of flextime on work performance, mental wellbeing, work-family 

balance, wage difference and urban productivity (Ott, 1980; Christensen and Staines, 1990; Ezra 
and Deckman, 1996; Gariety and Shaffer, 2001; Lucas and Heady, 2002; Sharpe et al., 2002; 
Scroggins et al., 2010; Spieler et al., 2017). Even fewer papers analyze the impacts of flextime on 
travel outcome (Yeraguntla and Bhat, 2005; He, 2013). Most of these studies indicate flextime 

schedules have positive impacts.  

McCafferty and Hall (1982) compared travel time choice before and after the closure of one CBD 
road exit in Ontario, Canada. Although the study considered flextime to indicate whether workers 
had flexibility to choose when to start work, flextime was used for sample selection instead of as 

an explanatory variable. The final sample included only those who had a flextime option. The only 
variable found to be significant was income. The authors maintained that the poor model fit 
indicated the effectiveness of flextime in altering temporal pattern of travel demand. However, due 
to the small sample size, the authors pointed out that their result was not conclusive to assess the 

effectiveness of flextime. The authors suggested including more explanatory variables over a 
larger sample size may improve the evaluation and accurately predict time choice behavior.  

Chin (1990) studied the effect of location, individual demographic characteristics and occupational 
factors on departure time based on the implementation of the Area License Scheme (ALS) in 

Singapore. Results showed that ALS had heterogeneous impacts on departure time choice across 
different mode users. Car users, whose departure time share before 7:30AM rose from 28% to 
42%, were impacted the most. The study also revealed that low-income travelers were more likely 
to work in production and manufacturing sectors which often follow a rigid work schedule due to 

the economies of production when all assembly lines must be staffed. However, high-income 
travelers, such as those who work in business, construction, administration, trade, sales, and 
clerical jobs, were also found to be less likely to vary their departure times. 

He (2013) used a multinomial logit (MNL) model to analyze the influence of flextime on the 

departure time of commuters in the two largest cities of California: Los Angeles and San Francisco. 
Trip data were drawn from the National Household and Travel Survey (NHTS) 2009. Results 
indicated that workers from certain occupational categories, such as sales, professional, service, 
managerial, and technical jobs, were much more likely to depart during post-peak hours, whereas 

those in manufacturing, construction and production chose to leave home during pre-peak hours. 
Similar findings were also reported by Chin (1990) and Yoshimura and Okumura (2001). Among 
other factors, travel distance, number of non-work trips and family composition were significant 
factors in departure time choice. The model included flextime alternative as an explanatory 

variable. Those who had a flextime option preferred to depart later. Flextime increased the 
probability of post-peak departure by 7.41% and reduced the probability of departure in pre-peak 
and peak hours by 3.30% and 4.11%, respectively.  



4 
 

While most studies defined flextime based on binary options of having flexible working schedules 
or not, Saleh and Farrell (2005) used five factors to operationalize the level of flexibility: whether 
the employee could start work 30 mins before or after the official start time, presence of dependent 

children in the family, non-work family activity, and income. These factors reflect work schedule 
flexibility, non-work flexibility and financial flexibility. Using an MNL model, Saleh and Farrell 
(2005) found that a higher level of flexibility encouraged people to depart later. The findings also 
show that non-work flexibility and work schedule flexibility have a large influence on departure 

time choice. Those who have flexible work schedules may not be flexible in their work trips due 
to other non-work-related commitments. 

DATA AND METHODOLOGY 

STUDY AREA 

This work focuses on the Austin, Texas region, that houses 2.2 million residents and is among 

USA’s fastest growing metro areas (U.S. Census Bureau, 2019). Traffic congestion has become a 
major concern for Austin as the rising travel demand has outgrown the transportation 
infrastructure, at least during peak times of day.  Across US regions, Austin ranks between 11th 
and 20th for metrics such as yearly delay per auto commuter, travel time index, commuter 

congestion cost per auto commuter, and commuter stress index (Texas Transportation Institute, 
2019). It is expected that many Austin drivers already adjust their travel time to cope with traffic 
congestion, but little is known on what the specific effect of flextime is on departure time. 

DATA 

The Austin Household Travel Survey data for years 2017-2018 contains household-level, person-
level, vehicle-level, and trip-level details. A total of 35,699 trips are collected across all trip types 

from 2,920 participant households. The survey area includes five counties in the Capital Area 
Metropolitan Planning Organization (CAMPO) boundary: Hays, Travis, Williamson, Bastrop and 
Caldwell counties.  

The survey data includes a binary variable on travelers having flexible work hours. However, 

detailed information about the flextime policy is unavailable. For example, workers may have an 
informal arrangement instead of a formal one, or may have a limitation on number of days in week 
this flextime option may be used. This is a limitation since the effect of departure time choice for 
those with informal or limited flexible hours may not be uniform across all days, or the days 

reported in the dataset. Nevertheless, this study hypothesizes that any flexibility in work hours 
should have a non-zero effect on departure time choice, and the methodology is set up with that in 
mind.  

The proportion of workers in the study area having flexible working schedule option is 30%. Two 

peak hour periods are expected during daily operation. Figure 1 shows that the morning peak hours 
are from 6 AM to 9 AM, and the afternoon peak hours are from 4 PM to 7 PM. With the focus of 
this paper being the impact of flextime on departure time choice, only home-based work (HBW) 
trips (n = 1,809) are considered, and their return trips were removed. People leave as early as 8 

AM in the morning, and the busiest hour is expected to be between 8 AM and 9 AM. Overall, peak 
hours account for 62.5% of total trips, while the shares of pre-peak, post-peak (until midday) and 
after midday (12 PM) are 13.2%, 11.3%, and 13.0%, respectively. 
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Figure 1 Departure time distribution over the course of a day 
 

The trip data was further matched with Austin’s traffic analysis zones (TAZs) to obtain land-use 

information. Two land use variables are derived from TAZ data – density and entropy. Density 
represents how intensively the land is being used for different activities such as housing, 
employment and other purpose. In this study, activity density of TAZ trip origin was measured in 
terms of sum of population and employment normalized by the TAZ’s area. Entropy index shows 

the diversity of land use – how different activities are distributed across the space. The index is 
normalized by the number of distinct activities (natural log), to be bounded between 0 and 1 
(Cervero, 2003). Entropy index close to one means perfect balance – different activities are 
uniformly distributed, while the index value close to zero means the balance is not proportionate 

– a single type of activity is dominating the land use. 

MODEL SPECIFICATION  

Previous studies have used a discrete choice approach for modeling departure time choice 
(McCafferty and Hall,1982;Saleh and Farrell, 2005; He, 2013 ). However, the fundamental 

limitation of this approach is the discrete portioning of time in large bins (e.g. peak, off-peak, 
morning, evening). Different time intervals and resolutions can largely affect model outcomes. 
Two neighboring time points might fall into different time intervals but may intuitively have the 
same effect on choice. For example, if we define the peak period as 6AM-9AM, then two spaced 

time points (e.g., 8:55 AM and 9:05 AM) will fall into two distinct alternatives (8:55 AM as peak 
and 9:05 AM as off-peak), but decisions made at both those instances may be the same.  

Continuous cross-nested logit models for departure time choice have been widely used in previous 
studies to account for the correlation between two bins (Lemp and Kockelman, 2010; Lemp, 

Kockelman and Damien, 2010). A hazard duration model can also address the continuous nature 
of trip timing and trip duration (Gadda, Kockelman and Damien, 2009; Mannering et al., 1994; 
Niemeier and Morita,1996). Bhat and Steed (2002) proposed a continuous-time hazard duration 
model, which accommodates time-varying coefficients, time-varying covariates and unobserved 

heterogeneity in departure time choice. This approach splits the entire day into smaller grouped 
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intervals where the baseline hazard rate is assumed to be constant, and the coefficients vary in the 
pre-defined intervals. This frequentist approach helped overcome limitations in logit-based 
choices while respecting the continuous aspect of time.  

In this paper, a Bayesian equivalent of the time-varying proportional hazards model (Bhat and 
Steed, 2002) is pursued. The Bayesian approach provides flexibility in specification while 
continuing to allow for uncertainty quantification. Traditional hazard models like the semi-
parametric Cox proportional hazards model assume that the effect of a covariate on the hazard rate 

is constant at all points of time. This is limiting since travelers can make different choices 
depending on the time of day when controlling for other factors. The value of travel time is 
potentially perceived differently at different times of day. This is especially true when travelers 
have the flexibility in their work times or have the option to telecommute. There may be a delayed 

departure from home in such situations without compromising on daily work activities such that 
the effect size is higher later in the day. Travelers with such flexibility may make essential personal 
trips such as taking children to school or running an errand before traveling to work, or may choose 
to travel once peak hour congestion has passed. Similarly, other variables that do not vary across 

time may still exhibit differential effect at different times of day, and some others may have a 

constant effect throughout the day. The variation in decision-making for all factors 𝐺 across the 
day is captured by including time-varying coefficients, 𝛽(𝑡), in the model. Finally, some other 

factors, 𝑋, may provide a constant, time-invariant effect, 𝛼, and is also included in the model. 

An individual’s departure time 𝑇, representing the duration from midnight until departure has the 

hazard, 𝜆 (𝑡), at any time 𝑡 less than 𝑇. This hazard rate is the instantaneous probability that the 
traveler will depart in a small time interval Δ𝑡 after time 𝑡, given that departure has not occurred 

until time 𝑡. The definition of hazard in terms of probability can be expressed as follows:  

𝜆 (𝑡) = lim
Δt→0

P(t < T < t + Δt | T > t)

Δt
 

This formula makes it possible to calculate the cumulative distribution function for departure at 

time 𝑡, 𝐹(𝑡), and survival function denoting cumulative probability of not departing until time 𝑡, 

𝑆(𝑡), as shown in the following expression: 

𝜆 (𝑡) =  
𝑓(𝑡)

𝑆(𝑡)
=  −

𝑑𝑆(𝑡)
𝑑𝑡

𝑆(𝑡)
= −

𝑑

𝑑𝑡
𝑙𝑛𝑆(𝑡) 

𝑆 (𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡) = exp (− ∫ 𝜆 (𝑥)𝑑𝑥
𝑡

0

) 

This definition of hazard rate is transformed to accommodate time-varying, time-invariant and 

unobserved heterogeneity effects. The following equation denotes the use of the time-varying 

hazard rate 𝜆(𝑡), estimated in bins of departure. It is expected that the proportional effect of a 
covariate remains constant in smaller buckets of time during the morning peak, and may remain 
constant over mid-day. So, these bins of departure are allowed to vary in size across the day, with 
finer granularity of 15-min in the morning peak, and larger bins of 120 and 240 min depending on 

anticipated departures in the data at those times of day. As shown below, 𝜆(𝑡) is estimated by 
using a non-parametric time-varying baseline hazard rate 𝜆0(𝑡), the zero lower-bounded exponent 
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consisting of observed covariates X and G, corresponding coefficients 𝛼 and  𝛽(𝑡), and unobserved 
component 𝜔𝑖  for each individual 𝑖. Therefore, an individual’s hazard at time 𝑡 (after dropping 

subscript 𝑖 for the individual) is given by: 

𝜆(𝑡) = 𝜆0(𝑡) exp(𝛼𝑋 + 𝛽(𝑡) × 𝐺(𝑡)) 𝜔  

The parameters available for 𝐺 is exploded for each time bin used in the model. The Bayesian 
hierarchical model is set up to estimate the hazard rate from the data. Observed departure times 

need to be discretized into bins corresponding to the bins used for the time-varying 𝛽(t). A variable, 
𝑑𝑖𝑗, is created to identify whether an individual 𝑖 departed during the bin 𝑗. Correspondingly, 

survival time is computed as 𝑡𝑖𝑗, that denotes the time in the bin 𝑗 that individual 𝑖 survived or did 

not depart. A convenient Poisson approximation for 𝑑𝑖𝑗 allows for estimating the hazard rate when 

the mean of the Poisson is 𝑡𝑖𝑗 times the hazard rate in bin 𝑗 (Ibrahim et al., 2014). The resulting 

Bayesian hierarchical model used is, therefore:  

𝑑𝑖𝑗 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑡𝑖𝑗 × 𝜆𝑖𝑗)  

𝜆𝑖𝑗  ← 𝜆0𝑗 × exp(𝛼𝑋𝑖 + 𝛽𝑗𝐺𝑖𝑗) 𝜔𝑖   

𝛼 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑘
2) 

𝛽1  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑘
2) 

𝛽𝑗 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛽𝑗−1, 𝜎𝑘
2) 

𝜔𝑖  ~ 𝐺𝑎𝑚𝑚𝑎 (𝑎0,𝑎0) 

The variance for parameters was allowed to vary based on bin size with each bin size variance 

estimated through a series of hierarchical priors 𝜎𝑘
−2 distributed Gamma(𝑏0, 𝑏0) and 𝑏0 distributed 

Gamma(0.1,0.1). Since all parameters used were normalized, the expected variance from the 
priors alone was selected such that it was 1. The time-varying parameter is expected to be 
correlated between bins, so a random walk is assumed, where the prior imposes a mean based on 

the 𝛽 in the previous time bin. The unobserved heterogeneity is also expected to have a mean of 
1, if all heterogeneity is accounted for, so the Gamma prior with the same parameters allows for 
mean 1, with variance allowed to be dictated by a hierarchical prior Gamma(1, 0.1). The baseline 
hazard rate is hard to know before hand, so an uninformative prior Gamma(0.001,0.001) is chosen.  

RESULTS  

The Bayesian model discussed above was implemented in the R interface to JAGS (Denwood, 
2016; Plummer, 2019). Three chains were simulated in parallel with a 2,000 iteration burn-in, and 
1,000 iterations were analyzed for estimates and 95% credible intervals. 

Baseline Hazard 

Figure 2 shows the baseline hazard for the estimated model. The baseline hazard used here is non-
parametric and captures differential baseline hazard across different departure times for the 
average person. There is a general positive time dependency, as expected, meaning that the longer 

a commuter waits to depart, the higher their probability of departure in the next time period. The 
baseline hazard is small until 6AM, larger during peak hours, and eventually fades after 8 AM. 
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This is expected as a majority of work trips with or without flextime prefer to start their work 
during the morning hours, on average. 

Flextime Effect 

The time-varying effect of flextime on commuters’ departure time choice is captured by the 
corresponding coefficient estimates in β(t). A negative value of β(t), at any time t, suggests that 
flexible work hours decreases a commuter’s propensity to leave at that time t. The coefficient 
values sharply decline starting 6 AM in the morning, reach a maximum negative value at 7:45 AM, 

and then shifts back to 0 after 8:30 AM (Figure 3). The hazard multipliers represent the magnitude 
of covariate effect, determined by exp (β). Percentage change in the hazard can be further derived 
by {exp (β)-1} ×100. Thus, the effect of flextime can be interpreted at any instantaneous point of 
time in terms of percentage change in hazard rate. Accordingly, flextime decreases the hazard rate 

or the propensity to depart at 6 AM by 40.3%. The effect further goes higher as time progresses 
until it reaches its peak at 7:45 AM with 53.1% decrease in hazard rate. This time-varying effect 
of β(t) clearly shows that effect of flextime on departure time is not constant but significant ly 
varies throughout the day. Most importantly, the effect of flextime is predominant in deterring AM 

peak departures. Although many coefficients’ credible intervals estimated at off-peak hours 
include 0, the large deterrence in morning peak departures are quite significant. 

 

 

Figure 2 Baseline Hazard Function Figure 3 Time-Varying Coefficients of Flextime 
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The effect of flextime can be further illustrated by cumulative hazards plots for two groups – 
commuters with and without flextime (Figure 4). The slopes of these lines indicate the 
instantaneous probability of departure. During the early morning hours before 5 AM the hazards 
are nearly zero which means probability of departure is very low. Starting at 6 AM probability 

continues to increase indicating more departure during peak hours. However, the slope declines 
after 10 AM as departure rate falls after peak hours. For commuters with flextime, the hazard rate 
grows slowly over time before being indistinguishable from non-flextime commuters, implying 
that they are more likely to depart later than commuters without flextime during the peak hours.  

The survival function, which is actually the exponential of the negative cumulative hazard 
function, provides a better interpretation of the results (Figure 5). A closer look at the slopes shows 
a clear difference of survivals or likelihood to not depart between two commuter groups. 
Commuters without flextime option show higher probability of early departures, explained by the 

steep slope at the beginning and then gradual decline after the peak hours. Commuters having 
flextime option, on the other hand, prefer later departure as shown by less steep slope during early 
morning hours. Survival probabilities from the curves can be extracted into exact numeric values 
for any instantaneous time. The difference between cumulative survivals at the end of two time 

periods provides the probability of departure during that time interval. The predicted shares of 
departures of two commuter groups at an aggregate level are presented in Table 1. Accordingly, 
89.3% of commuters without flextime are expected to leave before 9 AM while this value reduces 
to 76.0% for commuters with flextime option. Flextime commuters show 8.2% less probability to 

depart during peak hours compared to their counterparts without flextime. The difference is more 
evident in post-peak hours: having flextime option increases the probability of post-peak departure 
from 8.0% to 18.4%.  

 

 

Figure 4 Estimated Cumulative Hazard  
Function 

Figure 5: Estimated Survival Function 
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Table 1: Predicted Percentage of Departures in each Time Period for an Average Traveler 

Time of Day 
Commuters 

Without Flextime 

Commuters with 

Flextime 

Pre-peak (Before 6 AM) 16.8% 11.7% 

AM Peak (6 AM- 9 AM) 72.5% 64.3% 

Post-peak until midday (9 AM-12 PM) 8.0% 18.4% 

After midday (After 12 PM) 2.8% 5.6% 

 

Other Covariate Effects  

Job category variables were found to be the strongest predictors of departure time choice. Workers 

in the industrial sector tend to depart earlier compared to those who are in managerial/professiona l 
sectors. The opposite is true for service and retail sector workers. The time-varying coefficients of 
industrial jobs show positive values during early morning hours starting at 5 AM, then a steep 
increase until 7:30 AM, following a decline afterwards (Figure 6). Early departure of industrial 

workers is consistent with labor economics: certain industries demand temporal agglomeration, 
follow rigid working hours and require their workers to arrive early in workplace. By contrast, 
workers in the service and retail sectors are much more likely to have departure times at later hours. 
The coefficients of service sector do not show significant values until 8:30 AM, but negative values 

afterwards suggest more departures during those hours. The same is true for retail sector, however, 
an important difference is that coefficients of retail sector are more spread throughout the entire 
day. This is expected as morning shift retail workers depart early in the morning while those who 
work in afternoon and evening shifts depart in later hours.  

Number of daily activities can also influence departure time choice. In this study, number of trips 
was used as a proxy variable for the number of activities performed during the travel day. 
Commuters who make higher number of trips on their travel day are more likely to avoid peak 
hours, especially with higher probability to depart in post-peak hours. The time-varying 

coefficients show increasing negative values during later part of the day. This finding suggests that 
workers, whose daily schedule is constrained by more activities, tend to choose afternoon or 
evening shifts. Mandatory activities e.g. taking children to school, going to groceries, hospitals 
etc. usually discourage the travelers to leave before and during the rush hours.  

Overall positive sign of trip duration coefficient suggests that trip duration increases hazard rate 
which implies that commuters with longer trip duration are more likely to depart earlier. The time 
varying effect shows that early morning hours have higher hazard rate which declines as the day 
progresses (Figure 6). This is expected because commuters try to avoid the uncertainty of longer 

travel and penalty of late arrival by departing in early hours. 

  



11 
 

 

 

 

  

Figure 6 Time-varying effects of the covariates  
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Demographic variables such as age, gender, ethnicity and household income were included in the 
model. The effects of age and ethnicity were not found significant at 95% credible interval. The 
effect of gender was found significant, but only in pre-peak hours, suggesting that female 

commuters are less likely to depart very early in the morning (before 6 AM), compared to their 
male counterparts. Previous studies, however, showed mixed effect of gender on departure time 
choice (Abkowitz, 1981; Saleh and Farrell, 2005; He, 2013). Some studies attributed the effect of 
gender to trip distance. Long distance commuters are more likely to be male, and therefore tend to 

depart earlier (Chin, 1990). Among other variables, household income (Annual income 75000+) 
was found significant. The coefficient values are negative until 7 AM, and positive in later hours 
(after 8 AM) suggesting that people of higher income are more likely to avoid early morning hours.    

Among the land use variables, density and entropy were included in the model, but found 

insignificant. One possible explanation is that dense, diverse built environment does not 
necessarily mean commuters live close to their workplace. The overall congestion effect depends 
on the entire network, not only on the origin or destination end of the trip.  

The effect of each covariate on cumulative hazard, with and without flextime option, was further 

compared with the baseline. In this way, the practical significance of flextime option on departure 

time across all the covariates can be understood. Table 2 shows the probabilities of cumulative 

hazards by 9 AM, averaged across all commuters. Having flextime option reduces the departure 

probability before 9 AM by 7.3%. Clearly, the effects of flextime on departure probability vary 

across the covariates. Among different job types, flextime has more significant impacts on retail 

and service sectors compared to industrial sector. Working in retail sector decreases the probability 

of departure before 9 AM by 12.51%. However, working in retail sector with flextime option 

further reduces this probability 22.05%. Similar effect was also observed for service sector, but 

less than retail. Flextime option also reduces departure probability for industrial workers, but the 

effect was less significant. As discussed earlier, production works usually start early in the 

morning, and industrial jobs demand temporal agglomeration. Therefore, the shift in departure 

time for industrial jobs is not as significant as other sectors.  

Among other variables, trip duration and number of daily trips also show practical significance. In 

general, people traveling longer are less likely to depart after peak hours but if they are provided 

with flextime choice, then they are more likely to utilize the opportunity and depart later. An 

increase of trip duration by 1 standard deviation increases the probability of departure before 9 

AM by 5.42%, but having flextime option reduces this probability by 0.6%. This is expected 

because flextime shifts the early morning departure for longer trip duration travelers but still they 

need to depart before 9 AM. Decreasing trip duration by 1 standard deviation, on the other hand 

has more significant impacts shifting the departure after 9 AM. Flextime also has significant 

impacts on those who need to perform more daily activities. An increase in daily activities reduces 

the probability of early departure, as expected. If they are provided flextime option, they can utilize 

the time for mandatory activities e.g. taking children to school and avoid early departure.  
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Table 2: Practical Significance of Flextime on Covariates 

  

Variable(s)-Specific Sensitivity 
Cumulative 

Departure By 9AM 

% Change 

(Effect –

Baseline) 
Flextime 74.06% -7.30% 

Sex (Female) 81.20% -0.16% 

Flextime + Sex (Female) 73.87% -7.49% 

Income<50K 80.65% -0.71% 

Flextime + Income<50K 73.08% -8.28% 

Income(50K-75K) 83.17% 1.81% 

Flextime + Income(50K-75K) 76.43% -4.93% 

Income 75K+ 82.38% 1.02% 

Flextime+ Income 75K+ 75.59% -5.77% 

Industrial Job 92.45% 11.09% 

Flextime+ Industrial Job 87.90% 6.54% 

Retail Job 68.85% -12.51% 

Flextime + Retail Job 59.31% -22.05% 

Service Job 78.66% -2.70% 

Flextime + Service Job 70.54% -10.82% 

Trip Duration (+ 1 SD) 86.78% 5.42% 

Flextime +Trip Duration(+ 1 SD) 80.76% -0.60% 

Trip Duration(- 1 SD) 75.00% -6.36% 

Flextime + Trip Duration(- 1 SD) 66.71% -14.65% 

Number Of Daily Trips (+1 SD) 76.85% -4.51% 

Flextime + Number Of Daily Trips   ( +1SD) 68.65% -12.71% 

The bolded percentages show practical significance of flextime 

CONCLUSIONS  

This paper examines the choice of departure time by using trip data from the Austin Household 
Travel Survey conducted in 2017 and 2018. A Bayesian proportional hazards model is established 

to evaluate the effectiveness of flextime on commuters’ travel outcomes. By using a continuous-
time approach, the model overcomes the limitation of discrete time structure, and offers precise 
prediction of departure times. Another improvement of this model from the commonly used 
proportional hazard model formulation is that it includes the time varying effects of covariates on 

departure time choice.  

The results show that flextime has a significant impact on departure time choice among Austin 
commuters. The time-varying effect shows that effect of flextime on departure time is not constant 
but significantly varies throughout the day. Workers with flextime tend to depart later than those 

without such option with stronger probability to avoid AM peak hours. The predicted probabilit ies 
calculated from the hazard function shows that flextime decreases the share or peak hour departure 
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from 72.5% to 64.3%. The difference is more evident in post-peak hours: having flextime option 
increases the probability of post-peak departure from 8% to 18.4%. The proportional hazard model 
controlled significant variables affecting departure time choice such as workers’ job type, trip 

duration, number of trips during the travel day and household income. Job category variables were 
found to be have the strongest effect on departure time choice among the covariates. Industrial 
workers show higher probability to depart in early morning hours while those in service and retail 
sector tend to depart later. The results also show that effects of flextime vary across covariates. 

Flextime option have more practical significance shifting the departure time for retail and service 
sector employees, those who travel longer and whose daily schedule is constrained by more 
activities.  

The findings of this study have substantial implications in transportation policy analysis, 

particularly at the time when employment characteristics, working arrangements and 
communication technologies are changing rapidly, and alternative work schedule (AWS) 
programs are becoming more prevalent. The continuous departure time model developed in this 
paper can be used to evaluate the impacts of flexible working schedule at any level of temporal 

resolution.   

The significant positive impact from this paper reconfirms the theoretical underpinnings that 
implementing such policies would ease congestion by staggering travel demand from peak to off-
peak hours. As found by previous research, careful implementation of flextime programs can 

provide multi-level benefits including reducing congestion and pollution, enhancing productivity , 
and maximizing personal wellbeing. Constructing new infrastructure is expensive and time 
intensive. Alternative work schedule (AWS) programs can effectively manage the demand by 
encouraging more off-peak hour departures. AWS policy implementation is a potential research 

direction in future studies.  
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